Embedded
Software Development
with Java?

By
Martin Astradsson
email: martin.astradsson@hyphen-innovation.com

Agenda

Embedded SW Development with Java?

Why are Java “not” used for embedded software?

Why would it be beneficial to use Java?

What are the problems using Java?

Introduction to Java platforms, configurations and profiles
Different places to start looking for information

Conclusion

Why Are Java Not Used?

Business:

* Legacy codeisin C/C++

* No time to learn a new language and tools

* Tied to a expensive vendor tool/library purchase
* Legacy hardware

Emotional:

* Want to stay in the C/C++ comfort zone

- new way of developing, e.g. no pre-processor, pre-verification, no
pointers, “no linking”

Technical:

* Java is too big

* Javais to slow

* Java is un-predictable (scheduling, garbage collection, dyn. class loading)

* Don't “trust” the JVM since | don't know what it is doing

Benefits

Large standard libraries

Easier to test applications on PC hosts without making wrapper layers
RTOS independent application code

Standard API's (networking, serial, parallel, bluetooth, usb,)

- vendor independence, if needed your vendor change, but your
application code does not.

Java programs are more reliable (no memory leaks, array bounds
checking)

- and this also gives a lot of problems

Java has exception handling (just like C++). Good,

- but also a problem, normally people don't want to use C++ exceptions
in real-time systems

Primitive data type sizes are standadized (no more DWORD, int8, UINT32)

Productivity / maintainability

Benefits

Tools support are very good (Eclipse, NetBeans, Jedit, ..)

JavaDoc and JUnit

UML (reverse engineering, roundtrip, UML <-> Code sync via AST etc.)
Source editing (quick fix, hyperlinks, java doc, api knowledge, etc..)
Refactoring is really good

Instant “problem” feedback when editing code

Same tools and language from enterprice systems, over desktop, to large
and small embedded systems with real-time requirements.

- Team members can work in many areas

- How many times have you been forced to learn new tools and compiler
tool chains

- How many RTOS' have you programmed for etc.

Standard build systems (e.g. ANT) , continues integration etc.

- Can you build you projects outside the vendor IDE?

Business Opportunities

Productivity (e.qg. refactoring, the code, compile immediately, document)
Maintainability (JUnit, JDoc, soft/hard language)
Mobile market:

- 15 billion USD (downloadable application market by 2008)
- cross 1 billion Java enabled units mid-2006

- 30+ different vendors

- 600+ models

Make component oriented development

- develop and test on PC
- use them in embedded systems

- use them on mobile devices (which is “embedded” in terms of memory
constaints, debug capabilities)

- use them for desktop applications

Productivity

Refactoring and Source Editing

Refackor Mavigate Search Project Run Window Help Source | Refactor Mawigake Search Project Run Window Help
Rename. .. Alt-+Shift+R (= i Toggle Comment Chrl+) S W N |_4| =
. I : : i = .
Move... AlE+Shift -+ 1 Add Block Comment Chrl+Shift+] — '
Change Method Signature. .. Alk+Shift4+C W Remove Block Comment Chrl+Shift+)
Extract Method BlE+ShiFE M ntify Generate Element Cormment Alt+3hift+1 e
) cem i | p1dEditor.dispose() ;
Extract Local Wariable. .. Ale+-5hift+L | shift Right
em == .)
ExFract Constant. . . s ji - Shift Left Identify the selected row
Inlire... Alt+Shift+1 ’ 1 Correct Indentation Chrl+1 yleTtem item = (TableItem)
Corvvert dnonymous Class bo Mested.., — Farmat Clrh+Shift+F fitem == null]
Corrvert Member Tvpe to Top Lewvel e g Format Elsment return;
Corveert Local Yariable to Field. .. wEdd ! Add Import CHl+SHIFE4+M .
Extract Superclass or .= Crganize Imports CEEl+Shif O The control that will he ©
" Takble
Extract Interface... LOL . & Sork Members... Fdi _ T b
] ic voi Clean Up. .. «L newEditor = new Text(t
Use Supertype Where Possible. . T Editor.zsetText(item.getTex
Push Down... itor OverridefImplement Methods.,. Editor.addNodifyListener (n
Pull Up.... S.'E Generake Getkers and Setters, ., sublic void modifyText (Modi
Intraduce Indireckion, ..) Generate Deleqgate Methods, . Text text = [Text] editor
Intraduce Factory. .. Generate hashiCodel) and equals()... editor.getItemi)
Intraduce Pararmater. .. — Generate Construckar using Figlds, .. .setText (EDITAELECOLT
.) Generate Conskructors From Superclass. ..
Encapsulate Field... ror.s P
Generalize Declared Type .2etE Surround iith alt+shift+z * Try/catch Block
Infer Generic Type Arguments. .. Externalize Strings... 1 for (iterate over array)
Migrake J&R. File... ize(3 E Finu:I'Eieren Exkernalized Strings z !:Iu:u.(ch:u wihile statement)
Create Script... 0 Beans o4 \ O T 3 {if skakement)
apply Script. .. the Wisual Editar For Java L 4 try (try cabch block)
Histary. . e11. i shell. 5 whie {whie loop with condition)
- - shell. 6 synchronized {synchronized block)
7 runnable {runnable)
3ysten
s Configure Templates, ..

Maintainability

Thiz iz The Foo interface.
anthor astradss

wf
“public interface Foolnterface
i

LV TR e O Iy [=" AV S
+

&%

[y
o

public int foolint a, int b):

[y
[y
;-\.\,.r

12

Y=public interface Foolnterface

=

o= ;**

10 * The Foolnterface iz & collection of swall utilities used for....
11 ¥ @param a One parameter you want to add to the other

12 ¥ @param b The other parameter vou want to add to the first

13 * @dreturn foo returns the result of a + b

14 W

15 public int foo(int a, int b]d

16) q

17

fm Hello.java (m *Foolnterface.java =4 m *Foo,java
1
=
3 * This i= The Foo interface.
4 * @daunthor astradss
5 +*
& */
Y=public interface Foolnterface
=L
9 = lI." T E
10 |
11 ¥ @dparam a
12 * @param b
13 * @dreturn
14 */
15 public int fooiint =, int k) :;
16 '}
17

e
m Hello,jawa

(m *Foo,java i

m Foolnterface.java

1

= public int fooiint =,

int k)

return a+th;

Maintaina

1t

@ Foofint &, int b)) ink - FooInterface

13 @ hashCode() int - Ohject

1%} equals{Object obi) boolean - Ohject

15 getClass{) Class - Object

notify() woid - $bject

nokifyallly woid - Object

kosSkringl) String - Object

waik() void - Object

wait(long kimeout) void - Object

wait(long kimeout, int nanos) waoid - Object

i@ Hello.java % m *Foolnkerface.java m Foo,java =
1 o
Z-public cla=ss Hello
3
4
(= .-"l**
[¥ @param args
7 w4
o= public static void wain(3tring[] args)
=] {
10 FooInterface Foo = new Fool():
w1l int a = Foo.foo(10,12);
1z H The Foolnterface is a collection of small tilities used Far. ...

Parameters:

a one parameter vou want to add to the other

b The other parameter wou wank ko add ko the Firsk
[Returns:
foo rekurns the result of a + b

Maintainability

4
H S public void testFool)

Y| T Project. .. i
&[0 F
m H Open _ F3 \ B Package
Cmh JRE Systd ORen With G Class !
) JUNIT_H Open Type Hierarchy F4
& doc . e €V Interface
! hexFileview | o= -OPY e & Enum
\ smartkest [y« [[5 Paste Chrl+y @ Annotation
» tableeditor
¥ Delete Delete &Y source Folder
Build Path r
Falder
Source Ale+shife+5 F D;
Refactar Alt+shife+T »| L File
= Untitled Text File
Exq Import. .. "
£ IUnit Tesk Case
£ Export. ..
9 COther... Chrl+M

[
Package Explorer | gu JUnit 3 1

p
_LT_I Hella,java EI FooInterface, java EI Foo,java ﬂil FooTest.java &4

Finished after 0 seconds = 1 dimport junit.framework.Testlase;

| 2 BB i

J=public class FooTest extends TestCase

Runs: 1f1 B Errors: 0 B Failures; 0 eI
S5 public void testFoaol)
i ;
? FooInterf F = F H
BB Failures |E|'E: Higrarchy _DD pteErtace foo new Foo i)
= g int a = Foo.foo(l,2);
=i = assertEguals=s(3, a):;
e EIE[kestFoo !

10 gssertfguals (10, Foo.fool(S,5)1);

C/C++ Development Flow

Build RedBoot for
running and debugging
applications

Install RedBoot
on target

Build eCos Libraries

Build Application

Link application and
eCos libraries

Download, flash,
and run application
via RedBoot

&pploation

el Banver

K nad

Configure source tree, Stack System
then build
Hardwars Absriraitlon Layer Diibow Dirlvsirs
Fad Eicart SE E
ROM Honkce E’ 28 3 E =
£ =2 8 al |
Target Harchware

You know what is happening all the way
from HW reset, boot code, boot loader,

interrupts, until your framework is started etc.

You are in control with respect to memory

layout via linker command files and pragma directives

Java Development Flow

/src

Execute on PC
Deploy on server

e

Compile:

javac
-bootclasspath
-classpath
-sourcepath
-extdir

-dest

for download to mobile

etc.

myApp.jar
\/

y—

Package:
jar
cf myApp.jar *.class

/build/tmpClasses

*.class

Preverify:
preverify
-classpath
-dest

/build/pvClasses

*.class

Java™ 2 Platform, Standard Edition v 1.4

lava
Virtual
Machine

Platforms

Solaris™

Put People Back
INn the Comfort Zone

Limux

Windows

"~ PRSICRTEY Jova Compiler | java Debugger | Javadoc | jPoA
D t
Technaologies

User Interface
Toolkits

Apploation

Lbrarks Compatlbity
@ @ o
LN
— Hnt;;:lrg Flks
Harchwars Abstraction Layer | Device Drivers
RedBoot £ =2 £ ;
RO Honbor g a8 :
PR (g Z
k% A
~ 5

Targel Harchware

Java™ 2 Platform, Standard Edition v 1.4

DESSIORTIGAL Java Compiter

Java Platforms

Windowes

IDK

I

Java
Language

Development
Tools & APls

D ent
Tex! ies

User Inte
oo

Integration
Libraries
ge Other Base
Libraries

lang & util
Base Libraries

Java Virtual
Machine

Platforms

Some embedded devices are maybe
so big and complex today that

they could use a standard platform.
(maybe with the RTSJ extension which
is available from Sun)

If you can choose go for 5.0.

- Concurrency support has improved

- With state machines, you will
welcome enums

- and of course generics

Java™ 2 Platform Standard Edition 5.0

Java Language

java Other

Security I Int'l

Jjavac javadoc

apt jar javap JFDA

| L | Deploy |Monitoring| JiSYRk | jvmT

Windows

Editions, Configs and Profiles

Host Operating System

Java Languags

HotSpaot JU

M emary: TOMB f e TNE 51268 o4 —fp 3ZKE
&4 it 3E bin 16 hie 8 b

Classes outside J25E may not
use the jawva . * name space

Editions, Configs and Profiles

Standard API's

* These can help you as an embedded developer

Want to Use it in Next Project
Software Solutions

Sun KVM

- 128kbyte for the VM and its libraries
Sun HotSpot

KVM

Linux/Windows/??

ARM7TDMI
- 512kbyte to 1Mbyte for the VM stack
- Commercial license
Kaffe (www.kaffe.org)
- Linux dist*, uCLinux Kaffe VM

- Windows, Windows CE. DOS
- ThreadX, eCos, VxWorks, RTEMS
- Processors, e.g. ARM, x86

GCJ (http://gcc.gnu.org/java/) + jRate (RTS) add on to GC))
- Also ARM7 with Newlib

uCLinux/eCos

ARM7TDMI

http://www.kaffe.org/
http://gcc.gnu.org/java/

Want to Use it in Next Project
Byte codes and the VM

Jamaica virtual machine Macro Assembler

- an assembly language for JVM byte code programming

- generates java class files public class CFirstCls

{

int count;

ASM a byte code manipulation framework

- use it to see what byte code would generate public crirstcls() {

what java code tconst 0 |
putfield count 1int

- or what does the byte code for this java code | return

looks like?
. . public void inc(int amount)
- Has also an Eclipse plug in getfield count int
iload amount
Jakarta BCEL iadd
putfield count int
return

- Byte Code Engineering Library

- Use it to investigate and understand
java class files.

Jasmin

- Yet another Java assembler

{

Want to Use it in Next Project
Hardware Solutions

Ajile systems (www.ajile.com)
- J-100, 99% of byte codes in HW
- No RTOS
- 48kbyte internal RAM, no Flash :-(

GUI based application build configuration and control tool - JEM Builder

Utilizes standard JVM class files generated by commercial Java IDEs
Statically resolves class files and eliminates unused methods and fields
Performs byte code optimizations

Builds boot tables, class initialization code, and assigns interrupt and trap
handlers

Configures JVM's and memory layout

Price tag?

Want to Use it in Next Project
Hardware Solutions

* Systronix

- Many different HW boards / solutions

- JStick, JStamp

- They have a comparison matrix http://jstik.systronix.com/compare.htm
* Java Optimized Processor

- FPGA solution

- Well... we have already had the best possible introduction to that :-)

http://jstik.systronix.com/compare.htm

The Future

Sun SPOT (Wireless Sensor Platform)

Small Programmable Object Technology

VM's for small wireless controller devices and wireless sensor networks

ARM7 CPU, flash memory and SRAM, as well as an 802.15.4 Zigbee

wireless radio chip

The VM is "Squawk"

Optimized J2ME VM written almost entirely in Java

Run on bare metal => no need for an RTOS

Pre-verifies as usual; all symbolic references are resolve etc.

Can run multiple suites

Can run multiple suites and each suite's class files is optimized for that
Prototype VM is 350 kbytes of RAM and Flash combined

But, look here for the complete text with critiques:

http://www.embedded.com/showArticle.jhtml;jsessionid=LQLP2GZKQHOLWQSNDLOSKHSCJUNN2JVN?articleID=1
88101293

Conclusion

* Before starting out with an embedded Java project there are a great deal
of information that need to consumed

* Itis not enough to understand the Java language

e The JVM/KVM should be understood together with the boot process etc.,
just as the C runtime system is understood.

* Lot's of profiles and configurations should be studied

e |ot's of combinations of hardware and software solutions should be
studied

- But all this is business as usual when looking into pros and cons of new
technology

 |f the Embedded Java development environment where descriped better
by vendors, as seen from a C/C++ programmers perspective, it's likely
that more people would take the step

* We get higher productivity, better tools, better vendor independence and
SO on.

www.hyphen-innovation.com

Embedded
Software Development
with Java?

By
Martin Astradsson
email: martin.astradsson@hyphen-innovation.com

Agenda

Embedded SW Development with Java?

Why are Java “not” used for embedded software?

Why would it be beneficial to use Java?

What are the problems using Java?

Introduction to Java platforms, configurations and profiles
Different places to start looking for information

Conclusion

Why Are Java Not Used?

Business:

* lLegacy codeisin C/C++

* No time to learn a new language and tools

* Tied to a expensive vendor tool/library purchase
* Legacy hardware

Emotional:

* Want to stay in the C/C++ comfort zone

- new way of developing, e.g. no pre-processor, pre-verification, no
pointers, “no linking”

Technical:

* Java is too big

* Javais to slow

* Java is un-predictable (scheduling, garbage collection, dyn. class loading)

3
* Don't “trust” the JVM since | don't know what it is doing

There can be many reasons for developers not using Java for
embedded software development. In an organization there can be
political reasons, business reasons, emotional reasons and
believes from individuals that has a strong say within the
organization, and finally pure technical arguments that indicates
that Java is not the right choice for a certain application.

All these area has to be addressed if one would like to introduce Java
as part of the embedded software development strategy in a
company.

Apart from the technical concerns the challenges that one has to
overcome is not different from introducing any other change in a
technical strategy within organizations.

Benefits

* Large standard libraries

* Easier to test applications on PC hosts without making wrapper layers
* RTOS independent application code

* Standard API's (networking, serial, parallel, bluetooth, usb,)

- vendor independence, if needed your vendor change, but your
application code does not.

* Java programs are more reliable (no memory leaks, array bounds
checking)

- and this also gives a lot of problems
* Java has exception handling (just like C++). Good,

- but also a problem, normally people don't want to use C++ exceptions
in real-time systems

* Primitive data type sizes are standadized (no more DWORD, int8, UINT32)

* Productivity / maintainability 4

There are many benefits when using Java an some of them are listed
here. There is no doubt that is you have tried Java and good Java
development tools, you will feel like you are missing something
going back to the C/C++ world.

Some of the standard problems that an embedded software
developer face is solved or partly solved with Java like data type
ranges are standardized, you need only to learn one set of thread
semantics not 2,3 or 4 different RTOS'es.

There are large standard libraries which again protect your
investment in learning new API's, but of course you then have to
navigate in the profile jungle instead, since some libraries are only
available in standard edition and so on.

The hardware access is also supported by a lot of effort in
standardizing API's.

Benefits

* Tools support are very good (Eclipse, NetBeans, Jedit, ..)

¢ JavaDoc and JUnit

* UML (reverse engineering, roundtrip, UML <-> Code sync via AST etc.)
* Source editing (quick fix, hyperlinks, java doc, api knowledge, etc..)

* Refactoring is really good

* Instant “problem” feedback when editing code

* Same tools and language from enterprice systems, over desktop, to large
and small embedded systems with real-time requirements.

- Team members can work in many areas

- How many times have you been forced to learn new tools and compiler
tool chains

- How many RTOS' have you programmed for etc.
e Standard build systems (e.g. ANT) , continues integration etc.

- Can you build you projects outside the vendor IDE?

The tools for Java development is really good and even if the
language didn't give any advantage compared to e.g. C++, the
features of the tools will result in a better productivity.

JavaDoc and unit testing is better integrated and even you own
documentation becomes an integrated part of the tool and makes
it easier for fellow developers to use your code.

There are many UML tools available for Java and they support all
from simple forward engineering to reverse engineering and full
round trip. Even free versions of the tools are very good. The
same level of C++ support is not seen since the parsing of C++ is
not trivial.

You simply start thinking like a “better” software developer and start
using java doc, unit test, continuous integration and so on, which
again will improve your code base, productivity and quality.

Another benefit is that you could use the same language and
semantic all the way from enterprise systems, over desktop down
to embedded systems. Even web development including GUI could
be developed with Java if for instance Google's web toolkit is used.

Business Opportunities

* Productivity (e.g. refactoring, the code, compile immediately, document)

* Maintainability (JUnit, JDoc, soft/hard language)

* Mobile market:

15 billion USD (downloadable application market by 2008)
cross 1 billion Java enabled units mid-2006

30+ different vendors

600+ models

* Make component oriented development

develop and test on PC
use them in embedded systems

use them on mobile devices (which is “embedded” in terms of memory
constaints, debug capabilities)

use them for desktop applications

Beside from productivity and maintainability, which are very

important, one could also benefit from making components in Java
and then use them on PC's, in normal embedded targets and on
mobile phones. There is a high demand for wireless solutions also
for instrument control applications and why no use some of the
same business components on the desktop as on the mobile
devices. Again the differences between profiles has to be taking

into account from the beginning to make this possible.

Productivity

Refactoring and Source Editing

Refactor | Mavigate Search Project Run Window Help Salree) Refactor Navigate Search Project Run Window Help
Rename... Ale+Shife+R. &= & | Toggle Comment Ctrk+ . & o |—§| B
Move.. Alt+Shift+ 1 add Block Comment Ctri+Shift+] ==
Change Method Signature. .. Alt+ShifE+C Remove Block Comment Ctrh-Shift+)
Extract Method Al4shitem MEUify Generate Element Comment Altshift+ (o s o
—— ldEditor.dispose():
Extract Local Wariable. .. Alt+Shift+L | shift Right
em ==
Extract Constent. b j ShifeLsft Identify the selected row
Iniire... AlttShift+T . 1 Correct Indentation Chrk+ leTtem item = (Tableltem)
Conwert Anonymous Class to Nested. ., p— Format Cerl+Shife+F {item == null}
Canvert Member Type to Top Level e g Format Element eturn;
Converk Local Variable ka Field... wEdi [add Impart CtrlShift-+M)
Extract Superdlass or.s Crganize Imparts CirleShiferg | TS contral thac will be o
Tahle
Extract Interface. . ror . a Sort Members... Eai _ T -
Lic voil Clean Up... t nevEditor = new Textit
Use Supertype Where Possibl... Editor.setText (item.getTex
Push Down... e ce Crvertide/Tmplement Methads Ed ifvLi
itor. itor.addModifylListensr (mn
PullUp... . Generate Getters and Setters... ublic void modifyText (Modi
Introduce Indivection. .. Generate Delegate Methods. ., Text text = (Text) editor
Introduce Factory. .. Generate hashCode() and equalst). . editor.getItem()
Introduce Parameter. . L or o Generats Constructor using Fields... . setText (EDITABLEGOLT
Encapsulate Field... o Generate Constructors From Superclass. .
Generalizs Declared Type .SeLE Surround With BIEFShiFEF2 ®| Tryjcstch Block
Infer Generic Type Arguments... Externalize Strings. . 1 for (iterate aver array)
Migrate JAR Fils.., ize (3 2 do (do while statement)
Create Script... () : Beans = T 3 if (if statement)
Apply Script, .. the Visual Edior For Java T 4 try (try catch block)

shell, S while {while loop with condition)
shell., 6 synchronized (synchronized blocky
7 runnable (runnable}

Histary... ell.i

Systen

Configure Templates..,

A example of the level of support for refactoring and source code
changes in eclipse JDT. This has a great impact on the productivity
and the improvements you do on the code base during
development, since it it not a problem or major task to do it.

If you compare this to the refactoring supported by C++ IDE's (event
the CDT, which are the C++ tools for eclipse) the number of
refactoring s are only a few. And in some expensive tools from
various vendors there are no support what so ever.

Maintainability

m Hello.java m *Foolnterface java &5 m *Foo.java
1

z=fwn
3 * This is The Foo interface.
* @author astradss

4
5 =
6

7 public interface Foolnterface
[ERt

o5

fun
10 |
11 * @param a
12 * @param b
13 * @return
14 L

15 public int foo(int =, int b):

7opublic interface Foolnterface

]l @ Hello java | D Foolnterface.java f@ *Foo.java I

A
gi= Jar 1
10 * The Foolnterface is @ collection of swall utilities uwsed for.... 2-public class Foo implements Foolnterface
i1 * Eparam a One parameter you want to add to the other ERl
1z % @param b The other parameter you want to add to the first 4
13 % @return foo returns the resulet of a + b = 5° public int foo(int &, int k)
14 "/ [{
15 public int foo(int a, int bj:| ? return a+h;
15 — sl
2

A small simple example of using java doc. If you have the method
the Java doc tags are created automatically, so even for people
who can not remember them there is not excuse not to document
the code.

Maintainability

@ getClass() Class - Object

@ notify() void - Ohject

@ notifyal() void - Object

@ koString() String - Ohject

@ wait() vaid - Object

@ wait{long timeout) void - Object

@ wait(long timeout, int nanos) wvoid - Object

E Helloyjava &2 m *Foolnterface java | D Foojava =g
1 5
2-public class Hello [
3 {

4
E= S
3 * @param args
7 *
89 public static void main{String[] args)
] {
10 FooInterface Foo = new Fooi):

Wil int a - Foo.ffooii0,12)

12) @ foofint a, int b) int - FooInterface ;r;er:rn“né::r;aca is 5 collection of small Utiities used for....
v © hashCode() ink - Object 2 One parameter yau wank to add to the ther

4y © equals(Object obij} boolean - Cbject b The other parameter you wank to add to the first

15 Returns:

Foo returns the result of a + b

The documentation is easily accessible and integrates well with the
tool, so other developers can use your libraries (or your self for

that matter).

Maintainability

41
58 public void tescFooi)
= £ {
B F Project... n
-] F
oo H o F3 , 5 Package
=\ RESyst{ Open With @ Class]
& JUNIT_H{ Open Type Hierarchy Fé
- & Interface
& do =0 Chrl+C
! hexFileview | = COPY i & Enum
| smarttest [yx [Paste Chrl+w @ annotation
» tableeditor 3 Delete Delete 4% Souree Fokder
Build Path
Foldsr
Source Ale+3Shife+s P B;
Refactor alteshife+T ¥| 7 FlE
N [ZF Untitled Text File
Tmpart...
= £ MUrit Test Case
2 Export...
[Other... Chrl-+h

Package Explarer | g JUnie £2 1 = 0|] Hello.java [¥) Foolnterface.java [Foo.java [1) FonTest.java 5%
Finished after 0 seconds = 1 import junit.framework.TestCase;
Q[5B :
G-public class FooTest extends TestcCase
Runs: 1/1 B Erors: 0 HFalures: 0 ER
58 public void testcFool]
______________________Ji e «
ana\\ures E?:Hlerarchy 7 lj'ODInEEEfECE Foo = mew Fool():
e g int a = Foo.foo(1,2);
=l f:j_DTESt 2 assertEquals (3, a);
Bl testFon 10 assertEquals (10, Foo.foo(S5,5));

An example of the unit test integration in eclipse. It just makes is
more simple and the net result is that you actually start to use it,
which again will give you a better confidence in the code base,
and will improve the quality over time.

C/C++ Development Flow

Wb Borver
Install RedBoot
on target |
. Karnal Nebwarking Flie
Build eCos Libraries Conﬂgu_re source tree, e s
then build
Harchware Absiractkon Layer Divics Divera
. . . RatBat 1 E
Build Application ROM Wonlce g8
I = i
Link application and
eCos libraries Target Harchare
You know what is happening all the way B

Download, flash, from HW reset, boot code, boot loader,
and run application interrupts, until your framework is started etc.
dte Fesliaet You are in control with respect to memory 1
layout via linker command files and pragma directives

Build RedBoot for Sppleation
running and debugging
applications

Wt

Starting to use Java is also a shift in development process in some
sense. In C++ (or C) embedded developers are used to controlling
source code compilation with “ifdefs”, they know how the system
starts up all the way from the boot code, over the RTOS to the
main of the framework or the application. They are used to write
linker command files to place components in the expected
memory areas (e.g. rtos in internal zero wait state memory), they
know what goes into .bss, .text, .data and so on, and also know
how the C runtime system initialize memory segments. The linking
is done using object files or libraries and the final image is
downloaded to the target as a binary image, a hex file or even as
an elf file. In the target it is downloaded to ram and executed or
flashed. When you link you need to consider if the image is going
to be executed from the flash (load address) or from another ram
runtime address, and so on.

It is all a well known scenery for embedded software developers.
When shifting to Java this landscape is disturbed and you take the
developers out of their comfort zone. They don't know what is
happening any more from the point of pressing power on until
main is called.

Java Development Flow

/build/tmpClasses

E *.class ||
Compile:

javac
-bootclasspath

/src

-classpath

-sourcepath

-extdir e

—dest Prever!fy.
preverify
-classpath
-dest

Execute on PC
Deploy on server /build/pvClasses
for download to mobile

ctc —

myApp.jar

Package:
jar] 12
cf myApp.jar *.class

The development flow is changed. The most obvious one is the lack
of a preprocessor, and for embedded deployment you also have
the preverification step.

Normally on the desktop dynamic class loading, user defined class
loaders and so on are part of the landscape, but for embedded
deployment you don't have these options and you can not call the
jvm with the jar file for starting the application.

Put People Back
In the Comfort Zone

Java™ 2 Platform, Standard Edition v 1.4 Applalion

— D%oel':mﬁ; Java Compiler éﬂehugger Avadm: /jl'm I Lbrarks F}nllp!!lblllfp
e = 2 Wl Banvar
les ! & E

Hebworklng
Keened Slack syetem

Core
s Harctvirs Abstraction Layer [
FedBoot 1]
" ROM Hantor E 28 E H
i E = " i
- Sy
rms il S n _ _ _ _

So in order for new developers to stay in their comfort zone and
being willing to take the step and start using Java for embedded
development, they have to understand the normal C/C++
development steps in terms of Java semantics and development
flow and it involves both tools, libraries and applications, and
differences in linking (and also the desktop Java approach versus
the embedded Java approach), jvm's, kvm's all the profiles and so

on.

Java Platforms

Some embedded devices are maybe
Java™ 2 Platform, Standard Edition v 1.4 so big and complex today that

/ / / / they could use a standard platform.
[PRSICE Jeva Comiler | java Debugger | Javadoc 1P (maybe with the RTS] extension which

ool
is available from Sun)

If you can choose go for 5.0.
Integration .
s - Concurrency support has improved
- With state machines, you will
welcome enums
- and of course generics

Java™ 2 Platform Standard Edition 5.0

| Langdaee Java Language
e java rjmc rlmdntr apt r jar rjinp rJPDA rDthu /

$acuriw[Int'l [RMI [DL [Depicy [Mcnimring[;'izgg.’-:!.‘;[WM

The first thing that someone new to Java face is the the different
platforms for enterprise development, over desktop to embedded
in terms of the micro edition or down to java card. Each of these
also has its own life cycle with different set of features and
libraries, e.g. the introduction of enums and generics in Java 5.0
which certainly is a big advantage, but also the improved support

for concurrent application development.

Editions, Configs and Profiles

Not included in CLDC configuration:

- Application life-cycle management (application installation, launching, deletion) Configuration defines:

- User interface functionality *set of java language features
- Event handling eminimum VM features

- High-level application model (the interaction between the user and the «a set of class libraries
application)

Java Virtual Machine

Host Operating System

1IMB - P E———
& Bt aren i mIE L]

- The goal of the configuration is to guarantee portability and interoperability
between various kinds of resource-constrained devices

- Therefore the configuration shall not define any optional features.

- This limitation has a significant impact on what can be included in the
configuration and what should not be included.

- The more domain-specific functionality must be defined in profiles rather
than in CLDC.

When you are new to the java world all the different editions and
platforms and configurations — which exits in different versions like
Java Card 2.0, or 3.0, J2SE 1.4.x or J2SE 5.0, J2ME with CLDC 1.0 or
1.1, and so on. And on top of this comes profiles like the MIDP 1.0,

MIDP 2.0, Java Ravenscar Profile, Real time specification for
Java...

This can be some confusing in the beginning and it it important to
understand the differences in API's, libraries and JVM features if
one would like to develop components that can be used in more
than one setup.

Editions, Configs and Profiles

Just a simple example showing some differences between editions,
profiles and configurations. It is very simplified but should give a
idea about how things evolves or depends on each other.

Standard API's

* These can help you as an embedded developer

Application Layer I

JSR-82 JSR-197 JSR-80
BT GCF USB

JSR-256 javax.comm
Mob. Sensor Serial, Parallel

Windows, Linux, Embedded, Mobile I
7

In embedded software development it is normal to make hardware
abstraction layers to make application (business) components
independent of the hardware platform. In many cases companies
decide to purchase vendor components and the write the business
logic against the vendor API. The problem with this scenario is that
the API is not standardized and if not wrapped with an in-house
APl the component could not be changed with a better component
without rewriting part of the business components.

If standardized API's are used (and requested from vendors) the
vendor lock-in problem is avoided. If you find a better
(faster/cheaper/..) component you can switch it without changing
you business logic. You can event use an JSR-82 bluetooth API on
the PC for easier testing and then deploy to target for final testing
later in the development process (or just use the same BT
application on the desktop and mobile). The same could be true
for using serial communication. Most micro controllers have UARTs
and most people wrap them in an in-house API. The javax.comm
could be used and then the application could be tested on the PC.

There are a lot of interesting API's on the Java side, and these could
over time make the embedded applications more platform
independent.

Want to Use it in Next Project
Software Solutions

Sun KVM KVM

- 128kbyte for the VM and its librari

ytetorthe andits fibraries Linux/Windows/??
Sun HotSpot
ARM7TDMI

- 512kbyte to 1Mbyte for the VM stack

- Commercial license
Kaffe (www.kaffe.org)

- Linux dist*, uCLinux Kaffe VM

- Windows, Windows CE. DOS
- ThreadX, eCos, VxWorks, RTEMS
- Processors, e.g. ARM, x86

GCJ (http://gcc.gnu.org/java/) + jRate (RTSJ add on to GCJ)
- Also ARM7 with Newlib

uCLinux/eCos
ARM7TDMI

Want to Use it in Next Project
Byte codes and the VM

Jamaica virtual machine Macro Assembler

- an assembly language for JVM byte code programming

- generates java class files bublic class CFirstCls

{

int count;

ASM a byte code manipulation framework

- use it to see what byte code would generate public crirstcis() {

what java code iconst_0 ‘
putfield count int

- or what does the byte code for this java code , return

looks like?
. . public void inc(int amount)
- Has also an EC|IpS€ plug n getfield count int
iload amount
Jakarta BCEL iadd ‘
putfield count int
- Byte Code Engineering Library) return
- Use it to investigate and understand !
java class files.
Jasmin 19

- Yet another Java assembler

{

Want to Use it in Next Project
Hardware Solutions

Ajile systems (www.ajile.com)

- J-100, 99% of byte codes in HW

- No RTOS

- 48kbyte internal RAM, no Flash :-(
GUI based application build configuration and control tool - JEM Builder
Utilizes standard JVM class files generated by commercial Java IDEs
Statically resolves class files and eliminates unused methods and fields

Performs byte code optimizations

Builds boot tables, class initialization code, and assigns interrupt and trap
handlers

Configures JVM's and memory layout

Price tag?

20

Want to Use it in Next Project
Hardware Solutions

¢ Systronix

- Many different HW boards / solutions

- JStick, JStamp

- They have a comparison matrix http://jstik.systronix.com/compare.htm
* Java Optimized Processor

- FPGA solution

- Well... we have already had the best possible introduction to that :-)

21

The Future

* Sun SPOT (Wireless Sensor Platform)

Small Programmable Object Technology

e VM's for small wireless controller devices and wireless sensor networks

* ARMT7 CPU, flash memory and SRAM, as well as an 802.15.4 Zigbee

wireless radio chip
* The VM is "Squawk"

Optimized J2ME VM written almost entirely in Java
Run on bare metal => no need for an RTOS

Pre-verifies as usual; all symbolic references are resolve etc.

Can run multiple suites

Can run multiple suites and each suite's class files is optimized for that
Prototype VM is 350 kbytes of RAM and Flash combined

* But, look here for the complete text with critiques:

. http://www.embedded.com/showArticIe.jhtml;jsessionid:LQLPZGZKQHOLWQSNDLOSKHSCJUNN2JVN?articIeID2¥
88101293

Conclusion

* Before starting out with an embedded Java project there are a great deal
of information that need to consumed

* Itis not enough to understand the Java language

* The JVM/KVM should be understood together with the boot process etc.,
just as the C runtime system is understood.

* Lot's of profiles and configurations should be studied

e Lot's of combinations of hardware and software solutions should be
studied

- But all this is business as usual when looking into pros and cons of new
technology

* If the Embedded Java development environment where descriped better
by vendors, as seen from a C/C++ programmers perspective, it's likely
that more people would take the step

* We get higher productivity, better tools, better vendor independence and
so on.

23

www.hyphen-innovation.com

If you have questions or comments to this presentation, please send
an email to martin.astradsson@hyphen-innovation.com

