

Embedded
Software Development

with Java?

By
Martin Astradsson

email: martin.astradsson@hyphen-innovation.com

Agenda
● Embedded SW Development with Java?

● Why are Java “not” used for embedded software?

● Why would it be beneficial to use Java?

● What are the problems using Java?

● Introduction to Java platforms, configurations and profiles

● Different places to start looking for information

● Conclusion

Why Are Java Not Used?
Business:

● Legacy code is in C/C++

● No time to learn a new language and tools

● Tied to a expensive vendor tool/library purchase

● Legacy hardware

Emotional:

● Want to stay in the C/C++ comfort zone

– new way of developing, e.g. no pre-processor, pre-verification, no
pointers, “no linking”

Technical:

● Java is too big

● Java is to slow

● Java is un-predictable (scheduling, garbage collection, dyn. class loading)

● Don't “trust” the JVM since I don't know what it is doing

Benefits
● Large standard libraries

● Easier to test applications on PC hosts without making wrapper layers

● RTOS independent application code

● Standard API's (networking, serial, parallel, bluetooth, usb,)

– vendor independence, if needed your vendor change, but your
application code does not.

● Java programs are more reliable (no memory leaks, array bounds
checking)

– and this also gives a lot of problems

● Java has exception handling (just like C++). Good,

– but also a problem, normally people don't want to use C++ exceptions
in real-time systems

● Primitive data type sizes are standadized (no more DWORD, int8, UINT32)

● Productivity / maintainability

Benefits
● Tools support are very good (Eclipse, NetBeans, Jedit, ..)

● JavaDoc and JUnit

● UML (reverse engineering, roundtrip, UML <-> Code sync via AST etc.)

● Source editing (quick fix, hyperlinks, java doc, api knowledge, etc..)

● Refactoring is really good

● Instant “problem” feedback when editing code

● Same tools and language from enterprice systems, over desktop, to large
and small embedded systems with real-time requirements.

– Team members can work in many areas

– How many times have you been forced to learn new tools and compiler
tool chains

– How many RTOS' have you programmed for etc.

● Standard build systems (e.g. ANT) , continues integration etc.

– Can you build you projects outside the vendor IDE?

Business Opportunities
● Productivity (e.g. refactoring, the code, compile immediately, document)

● Maintainability (JUnit, JDoc, soft/hard language)

● Mobile market:

– 15 billion USD (downloadable application market by 2008)

– cross 1 billion Java enabled units mid-2006

– 30+ different vendors

– 600+ models

● Make component oriented development

– develop and test on PC

– use them in embedded systems

– use them on mobile devices (which is “embedded” in terms of memory
constaints, debug capabilities)

– use them for desktop applications

Productivity
Refactoring and Source Editing

Maintainability
This is all you type, then press enter!

Create the implementation

Maintainability

You own API's is easily accessible within the tool for the
other developers in the projects.

Maintainability

C/C++ Development Flow
Build RedBoot for

running and debugging
applications

Install RedBoot
on target

Build eCos Libraries

Build Application

Link application and
eCos libraries

Download, flash,
and run application

via RedBoot

Configure source tree,
then build

You know what is happening all the way
from HW reset, boot code, boot loader,
interrupts, until your framework is started etc.
You are in control with respect to memory
layout via linker command files and pragma directives

Java Development Flow

*.jjava
*.class

Compile:
javac
-bootclasspath
-classpath
-sourcepath
-extdir
-dest

/src /build/tmpClasses

Preverify:
preverify
-classpath
-dest

*.class

/build/pvClasses

Package:
jar
cf myApp.jar *.class

myApp.jar

Execute on PC
Deploy on server
for download to mobile
etc.

Put People Back
in the Comfort Zone

Java Platforms
Some embedded devices are maybe
so big and complex today that
they could use a standard platform.
(maybe with the RTSJ extension which
 is available from Sun)

If you can choose go for 5.0.
- Concurrency support has improved
- With state machines, you will
 welcome enums
- and of course generics

Editions, Configs and Profiles
Configuration defines:
●set of java language features
●minimum VM features
●a set of class libraries

- The goal of the configuration is to guarantee portability and interoperability
 between various kinds of resource-constrained devices
- Therefore the configuration shall not define any optional features.
- This limitation has a significant impact on what can be included in the
 configuration and what should not be included.
- The more domain-specific functionality must be defined in profiles rather
 than in CLDC.

Not included in CLDC configuration:
- Application life-cycle management (application installation, launching, deletion)
- User interface functionality
- Event handling
- High-level application model (the interaction between the user and the
application)

Editions, Configs and Profiles
J2SE 1.4
java.lang.Thread
java.lang.ThreadGroup
java.lang.ThreadLocal
java.lang.runnable

RTSJ (javax.realtime)
javax.realtime.RealTimeThread
javax.realtime.NoHeapRealTimeThread
javax.realtime.Schedulable
javax.realtime.ImmortalMemory
javax.realtime..ScopedMemory
javax.realtime.AsyncEvent (just like SWT Display.asyncExe)
javax.realtime.AsyncEventHandler

J2SE 5.0
java.lang.Thread
java.lang.ThreadGroup
java.lang.ThreadLocal<T>
java.lang.runnable
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks

Ravenscar (javax.ravenscar)
javax.ravenscar.PeriodicThread
javax.ravenscar.SporadicEventHandler
javax.ravenscar.ImmortalMemory
javax.ravenscar.LTMemory
javax.ravenscar.SporadicEvent
javax.ravenscar.SporadicInterrupt
- no garbage collector
- initialization / mission phases
- PCP scheduling

CDLC 1.0
java.lang.Thread
java.lang.xxx
java.util.Vector
java.util.Stack
etc.
Restrictions on language + VM:
No floating point support
No JNI
No user defined class loaders
No thread groups, thread daemons
No object finalization
(Main motivation: reduction of foot print)

CDLC 1.1
java.lang.Thread improved, e.g. has name now
floating point support
memory requirements from 160 kbytes to 192kbytes

MIDP 2.0
java.util.Timer
java.util.TimerTask
javax.microedition.io
javax.microedition.lcdui
javax.microedition.lcdui.game
javax.microedition.media
javax.microedition.media.control
javax.microedition.midlet
javax.microedition.pki
javax.microedition.rms

Standard API's
● These can help you as an embedded developer

Windows, Linux, Embedded, Mobile

Application Layer

JSR-82
BT

JSR-197
GCF

javax.comm
Serial, Parallel

JSR-80
USB

JSR-256
Mob. Sensor

Want to Use it in Next Project
Software Solutions

● Sun KVM

– 128kbyte for the VM and its libraries

● Sun HotSpot

– 512kbyte to 1Mbyte for the VM stack

– Commercial license

● Kaffe (www.kaffe.org)

– Linux dist*, uCLinux

– Windows, Windows CE. DOS

– ThreadX, eCos, VxWorks, RTEMS

– Processors, e.g. ARM, x86

● GCJ (http://gcc.gnu.org/java/) + jRate (RTSJ add on to GCJ)

– Also ARM7 with Newlib

ARM7TDMI

uCLinux/eCos

Kaffe VM

ARM7TDMI

Linux/Windows/??

KVM

http://www.kaffe.org/
http://gcc.gnu.org/java/

Want to Use it in Next Project
Byte codes and the VM

● Jamaica virtual machine Macro Assembler

– an assembly language for JVM byte code programming

– generates java class files

● ASM a byte code manipulation framework

– use it to see what byte code would generate
what java code

– or what does the byte code for this java code
looks like?

– Has also an Eclipse plug in

● Jakarta BCEL

– Byte Code Engineering Library

– Use it to investigate and understand
java class files.

● Jasmin

– Yet another Java assembler

public class CFirstCls
{
 int count;
 public CFirstCls() {
 iconst_0
 putfield count int
 return
 }
 public void inc(int amount) {
 getfield count int
 iload amount
 iadd
 putfield count int
 return
 }
}

Want to Use it in Next Project
Hardware Solutions

● Ajile systems (www.ajile.com)

– J-100, 99% of byte codes in HW

– No RTOS

– 48kbyte internal RAM, no Flash :-(

● GUI based application build configuration and control tool - JEM Builder

● Utilizes standard JVM class files generated by commercial Java IDEs

● Statically resolves class files and eliminates unused methods and fields

● Performs byte code optimizations

● Builds boot tables, class initialization code, and assigns interrupt and trap
handlers

● Configures JVM's and memory layout

● Price tag?

Want to Use it in Next Project
Hardware Solutions

● Systronix

– Many different HW boards / solutions

– JStick, JStamp

– They have a comparison matrix http://jstik.systronix.com/compare.htm

● Java Optimized Processor

– FPGA solution

– Well... we have already had the best possible introduction to that :-)

http://jstik.systronix.com/compare.htm

The Future
● Sun SPOT (Wireless Sensor Platform)

– Small Programmable Object Technology

● VM's for small wireless controller devices and wireless sensor networks

● ARM7 CPU, flash memory and SRAM, as well as an 802.15.4 Zigbee
wireless radio chip

● The VM is "Squawk"

– Optimized J2ME VM written almost entirely in Java

– Run on bare metal => no need for an RTOS

– Pre-verifies as usual; all symbolic references are resolve etc.

– Can run multiple suites

– Can run multiple suites and each suite's class files is optimized for that

– Prototype VM is 350 kbytes of RAM and Flash combined

● But, look here for the complete text with critiques:

● http://www.embedded.com/showArticle.jhtml;jsessionid=LQLP2GZKQH0LWQSNDLOSKHSCJUNN2JVN?articleID=1

88101293

Conclusion
● Before starting out with an embedded Java project there are a great deal

of information that need to consumed

● It is not enough to understand the Java language

● The JVM/KVM should be understood together with the boot process etc.,
just as the C runtime system is understood.

● Lot's of profiles and configurations should be studied

● Lot's of combinations of hardware and software solutions should be
studied

– But all this is business as usual when looking into pros and cons of new
technology

● If the Embedded Java development environment where descriped better
by vendors, as seen from a C/C++ programmers perspective, it's likely
that more people would take the step

● We get higher productivity, better tools, better vendor independence and
so on.

www.hyphen-innovation.com

 1

Embedded
Software Development

with Java?

By
Martin Astradsson

email: martin.astradsson@hyphen-innovation.com

 2

Agenda
● Embedded SW Development with Java?

● Why are Java “not” used for embedded software?

● Why would it be beneficial to use Java?

● What are the problems using Java?

● Introduction to Java platforms, configurations and profiles

● Different places to start looking for information

● Conclusion

 3

Why Are Java Not Used?
Business:

● Legacy code is in C/C++

● No time to learn a new language and tools

● Tied to a expensive vendor tool/library purchase

● Legacy hardware

Emotional:

● Want to stay in the C/C++ comfort zone

– new way of developing, e.g. no pre-processor, pre-verification, no
pointers, “no linking”

Technical:

● Java is too big

● Java is to slow

● Java is un-predictable (scheduling, garbage collection, dyn. class loading)

● Don't “trust” the JVM since I don't know what it is doing

There can be many reasons for developers not using Java for
embedded software development. In an organization there can be
political reasons, business reasons, emotional reasons and
believes from individuals that has a strong say within the
organization, and finally pure technical arguments that indicates
that Java is not the right choice for a certain application.

All these area has to be addressed if one would like to introduce Java
as part of the embedded software development strategy in a
company.

Apart from the technical concerns the challenges that one has to
overcome is not different from introducing any other change in a
technical strategy within organizations.

 4

Benefits
● Large standard libraries

● Easier to test applications on PC hosts without making wrapper layers

● RTOS independent application code

● Standard API's (networking, serial, parallel, bluetooth, usb,)

– vendor independence, if needed your vendor change, but your
application code does not.

● Java programs are more reliable (no memory leaks, array bounds
checking)

– and this also gives a lot of problems

● Java has exception handling (just like C++). Good,

– but also a problem, normally people don't want to use C++ exceptions
in real-time systems

● Primitive data type sizes are standadized (no more DWORD, int8, UINT32)

● Productivity / maintainability

There are many benefits when using Java an some of them are listed
 here. There is no doubt that is you have tried Java and good Java
development tools, you will feel like you are missing something
going back to the C/C++ world.

Some of the standard problems that an embedded software
developer face is solved or partly solved with Java like data type
ranges are standardized, you need only to learn one set of thread
semantics not 2,3 or 4 different RTOS'es.

There are large standard libraries which again protect your
investment in learning new API's, but of course you then have to
navigate in the profile jungle instead, since some libraries are only
available in standard edition and so on.

The hardware access is also supported by a lot of effort in
standardizing API's.

 5

Benefits
● Tools support are very good (Eclipse, NetBeans, Jedit, ..)

● JavaDoc and JUnit

● UML (reverse engineering, roundtrip, UML <-> Code sync via AST etc.)

● Source editing (quick fix, hyperlinks, java doc, api knowledge, etc..)

● Refactoring is really good

● Instant “problem” feedback when editing code

● Same tools and language from enterprice systems, over desktop, to large
and small embedded systems with real-time requirements.

– Team members can work in many areas

– How many times have you been forced to learn new tools and compiler
tool chains

– How many RTOS' have you programmed for etc.

● Standard build systems (e.g. ANT) , continues integration etc.

– Can you build you projects outside the vendor IDE?

The tools for Java development is really good and even if the
language didn't give any advantage compared to e.g. C++, the
features of the tools will result in a better productivity.

JavaDoc and unit testing is better integrated and even you own
documentation becomes an integrated part of the tool and makes
it easier for fellow developers to use your code.

There are many UML tools available for Java and they support all
from simple forward engineering to reverse engineering and full
round trip. Even free versions of the tools are very good. The
same level of C++ support is not seen since the parsing of C++ is
not trivial.

You simply start thinking like a “better” software developer and start
using java doc, unit test, continuous integration and so on, which
again will improve your code base, productivity and quality.

Another benefit is that you could use the same language and
semantic all the way from enterprise systems, over desktop down
to embedded systems. Even web development including GUI could
be developed with Java if for instance Google's web toolkit is used.

 6

Business Opportunities
● Productivity (e.g. refactoring, the code, compile immediately, document)

● Maintainability (JUnit, JDoc, soft/hard language)

● Mobile market:

– 15 billion USD (downloadable application market by 2008)

– cross 1 billion Java enabled units mid-2006

– 30+ different vendors

– 600+ models

● Make component oriented development

– develop and test on PC

– use them in embedded systems

– use them on mobile devices (which is “embedded” in terms of memory
constaints, debug capabilities)

– use them for desktop applications

Beside from productivity and maintainability, which are very
important, one could also benefit from making components in Java
and then use them on PC's, in normal embedded targets and on
mobile phones. There is a high demand for wireless solutions also
for instrument control applications and why no use some of the
same business components on the desktop as on the mobile
devices. Again the differences between profiles has to be taking
into account from the beginning to make this possible.

 7

Productivity
Refactoring and Source Editing

A example of the level of support for refactoring and source code
changes in eclipse JDT. This has a great impact on the productivity
and the improvements you do on the code base during
development, since it it not a problem or major task to do it.

If you compare this to the refactoring supported by C++ IDE's (event
the CDT, which are the C++ tools for eclipse) the number of
refactoring s are only a few. And in some expensive tools from
various vendors there are no support what so ever.

 8

Maintainability
This is all you type, then press enter!

Create the implementation

A small simple example of using java doc. If you have the method
the Java doc tags are created automatically, so even for people
who can not remember them there is not excuse not to document
the code.

 9

Maintainability

You own API's is easily accessible within the tool for the
other developers in the projects.

The documentation is easily accessible and integrates well with the
tool, so other developers can use your libraries (or your self for
that matter).

 10

Maintainability

An example of the unit test integration in eclipse. It just makes is
more simple and the net result is that you actually start to use it,
which again will give you a better confidence in the code base,
and will improve the quality over time.

 11

C/C++ Development Flow
Build RedBoot for

running and debugging
applications

Install RedBoot
on target

Build eCos Libraries

Build Application

Link application and
eCos libraries

Download, flash,
and run application

via RedBoot

Configure source tree,
then build

You know what is happening all the way
from HW reset, boot code, boot loader,
interrupts, until your framework is started etc.
You are in control with respect to memory
layout via linker command files and pragma directives

Starting to use Java is also a shift in development process in some
sense. In C++ (or C) embedded developers are used to controlling
source code compilation with “ifdefs”, they know how the system
starts up all the way from the boot code, over the RTOS to the
main of the framework or the application. They are used to write
linker command files to place components in the expected
memory areas (e.g. rtos in internal zero wait state memory), they
know what goes into .bss, .text, .data and so on, and also know
how the C runtime system initialize memory segments. The linking
is done using object files or libraries and the final image is
downloaded to the target as a binary image, a hex file or even as
an elf file. In the target it is downloaded to ram and executed or
flashed. When you link you need to consider if the image is going
to be executed from the flash (load address) or from another ram
runtime address, and so on.

It is all a well known scenery for embedded software developers.
When shifting to Java this landscape is disturbed and you take the
developers out of their comfort zone. They don't know what is
happening any more from the point of pressing power on until
main is called.

 12

Java Development Flow

*.jjava
*.class

Compile:
javac
-bootclasspath
-classpath
-sourcepath
-extdir
-dest

/src /build/tmpClasses

Preverify:
preverify
-classpath
-dest

*.class

/build/pvClasses

Package:
jar
cf myApp.jar *.class

myApp.jar

Execute on PC
Deploy on server
for download to mobile
etc.

The development flow is changed. The most obvious one is the lack
of a preprocessor, and for embedded deployment you also have
the preverification step.

Normally on the desktop dynamic class loading, user defined class
loaders and so on are part of the landscape, but for embedded
deployment you don't have these options and you can not call the
jvm with the jar file for starting the application.

 13

Put People Back
in the Comfort Zone

So in order for new developers to stay in their comfort zone and
being willing to take the step and start using Java for embedded
development, they have to understand the normal C/C++
development steps in terms of Java semantics and development
flow and it involves both tools, libraries and applications, and
differences in linking (and also the desktop Java approach versus
the embedded Java approach), jvm's, kvm's all the profiles and so
on.

 14

Java Platforms
Some embedded devices are maybe
so big and complex today that
they could use a standard platform.
(maybe with the RTSJ extension which
 is available from Sun)

If you can choose go for 5.0.
- Concurrency support has improved
- With state machines, you will
 welcome enums
- and of course generics

The first thing that someone new to Java face is the the different
platforms for enterprise development, over desktop to embedded
in terms of the micro edition or down to java card. Each of these
also has its own life cycle with different set of features and
libraries, e.g. the introduction of enums and generics in Java 5.0
which certainly is a big advantage, but also the improved support
for concurrent application development.

 15

Editions, Configs and Profiles
Configuration defines:
●set of java language features
●minimum VM features
●a set of class libraries

- The goal of the configuration is to guarantee portability and interoperability
 between various kinds of resource-constrained devices
- Therefore the configuration shall not define any optional features.
- This limitation has a significant impact on what can be included in the
 configuration and what should not be included.
- The more domain-specific functionality must be defined in profiles rather
 than in CLDC.

Not included in CLDC configuration:
- Application life-cycle management (application installation, launching, deletion)
- User interface functionality
- Event handling
- High-level application model (the interaction between the user and the
application)

When you are new to the java world all the different editions and
platforms and configurations – which exits in different versions like
Java Card 2.0, or 3.0, J2SE 1.4.x or J2SE 5.0, J2ME with CLDC 1.0 or
1.1, and so on. And on top of this comes profiles like the MIDP 1.0,
 MIDP 2.0, Java Ravenscar Profile, Real time specification for
Java...

This can be some confusing in the beginning and it it important to
understand the differences in API's, libraries and JVM features if
one would like to develop components that can be used in more
than one setup.

 16

Editions, Configs and Profiles
J2SE 1.4
java.lang.Thread
java.lang.ThreadGroup
java.lang.ThreadLocal
java.lang.runnable

RTSJ (javax.realtime)
javax.realtime.RealTimeThread
javax.realtime.NoHeapRealTimeThread
javax.realtime.Schedulable
javax.realtime.ImmortalMemory
javax.realtime..ScopedMemory
javax.realtime.AsyncEvent (just like SWT Display.asyncExe)
javax.realtime.AsyncEventHandler

J2SE 5.0
java.lang.Thread
java.lang.ThreadGroup
java.lang.ThreadLocal<T>
java.lang.runnable
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks

Ravenscar (javax.ravenscar)
javax.ravenscar.PeriodicThread
javax.ravenscar.SporadicEventHandler
javax.ravenscar.ImmortalMemory
javax.ravenscar.LTMemory
javax.ravenscar.SporadicEvent
javax.ravenscar.SporadicInterrupt
- no garbage collector
- initialization / mission phases
- PCP scheduling

CDLC 1.0
java.lang.Thread
java.lang.xxx
java.util.Vector
java.util.Stack
etc.
Restrictions on language + VM:
No floating point support
No JNI
No user defined class loaders
No thread groups, thread daemons
No object finalization
(Main motivation: reduction of foot print)

CDLC 1.1
java.lang.Thread improved, e.g. has name now
floating point support
memory requirements from 160 kbytes to 192kbytes

MIDP 2.0
java.util.Timer
java.util.TimerTask
javax.microedition.io
javax.microedition.lcdui
javax.microedition.lcdui.game
javax.microedition.media
javax.microedition.media.control
javax.microedition.midlet
javax.microedition.pki
javax.microedition.rms

Just a simple example showing some differences between editions,
profiles and configurations. It is very simplified but should give a
idea about how things evolves or depends on each other.

 17

Standard API's
● These can help you as an embedded developer

Windows, Linux, Embedded, Mobile

Application Layer

JSR-82
BT

JSR-197
GCF

javax.comm
Serial, Parallel

JSR-80
USB

JSR-256
Mob. Sensor

In embedded software development it is normal to make hardware
abstraction layers to make application (business) components
independent of the hardware platform. In many cases companies
decide to purchase vendor components and the write the business
logic against the vendor API. The problem with this scenario is that
the API is not standardized and if not wrapped with an in-house
API the component could not be changed with a better component
without rewriting part of the business components.

If standardized API's are used (and requested from vendors) the
vendor lock-in problem is avoided. If you find a better
(faster/cheaper/..) component you can switch it without changing
you business logic. You can event use an JSR-82 bluetooth API on
the PC for easier testing and then deploy to target for final testing
later in the development process (or just use the same BT
application on the desktop and mobile). The same could be true
for using serial communication. Most micro controllers have UARTs
and most people wrap them in an in-house API. The javax.comm
could be used and then the application could be tested on the PC.

There are a lot of interesting API's on the Java side, and these could
over time make the embedded applications more platform
independent.

 18

Want to Use it in Next Project
Software Solutions

● Sun KVM

– 128kbyte for the VM and its libraries

● Sun HotSpot

– 512kbyte to 1Mbyte for the VM stack

– Commercial license

● Kaffe (www.kaffe.org)

– Linux dist*, uCLinux

– Windows, Windows CE. DOS

– ThreadX, eCos, VxWorks, RTEMS

– Processors, e.g. ARM, x86

● GCJ (http://gcc.gnu.org/java/) + jRate (RTSJ add on to GCJ)

– Also ARM7 with Newlib

ARM7TDMI

uCLinux/eCos

Kaffe VM

ARM7TDMI

Linux/Windows/??

KVM

 19

Want to Use it in Next Project
Byte codes and the VM

● Jamaica virtual machine Macro Assembler

– an assembly language for JVM byte code programming

– generates java class files

● ASM a byte code manipulation framework

– use it to see what byte code would generate
what java code

– or what does the byte code for this java code
looks like?

– Has also an Eclipse plug in

● Jakarta BCEL

– Byte Code Engineering Library

– Use it to investigate and understand
java class files.

● Jasmin

– Yet another Java assembler

public class CFirstCls
{
 int count;

 public CFirstCls() {
 iconst_0
 putfield count int
 return
 }

 public void inc(int amount) {
 getfield count int
 iload amount
 iadd
 putfield count int
 return
 }
}

 20

Want to Use it in Next Project
Hardware Solutions

● Ajile systems (www.ajile.com)

– J-100, 99% of byte codes in HW

– No RTOS

– 48kbyte internal RAM, no Flash :-(

● GUI based application build configuration and control tool - JEM Builder

● Utilizes standard JVM class files generated by commercial Java IDEs

● Statically resolves class files and eliminates unused methods and fields

● Performs byte code optimizations

● Builds boot tables, class initialization code, and assigns interrupt and trap
handlers

● Configures JVM's and memory layout

● Price tag?

 21

Want to Use it in Next Project
Hardware Solutions

● Systronix

– Many different HW boards / solutions

– JStick, JStamp

– They have a comparison matrix http://jstik.systronix.com/compare.htm

● Java Optimized Processor

– FPGA solution

– Well... we have already had the best possible introduction to that :-)

 22

The Future
● Sun SPOT (Wireless Sensor Platform)

– Small Programmable Object Technology

● VM's for small wireless controller devices and wireless sensor networks

● ARM7 CPU, flash memory and SRAM, as well as an 802.15.4 Zigbee
wireless radio chip

● The VM is "Squawk"

– Optimized J2ME VM written almost entirely in Java

– Run on bare metal => no need for an RTOS

– Pre-verifies as usual; all symbolic references are resolve etc.

– Can run multiple suites

– Can run multiple suites and each suite's class files is optimized for that

– Prototype VM is 350 kbytes of RAM and Flash combined

● But, look here for the complete text with critiques:

● http://www.embedded.com/showArticle.jhtml;jsessionid=LQLP2GZKQH0LWQSNDLOSKHSCJUNN2JVN?articleID=1

88101293

 23

Conclusion
● Before starting out with an embedded Java project there are a great deal

of information that need to consumed

● It is not enough to understand the Java language

● The JVM/KVM should be understood together with the boot process etc.,
just as the C runtime system is understood.

● Lot's of profiles and configurations should be studied

● Lot's of combinations of hardware and software solutions should be
studied

– But all this is business as usual when looking into pros and cons of new
technology

● If the Embedded Java development environment where descriped better
by vendors, as seen from a C/C++ programmers perspective, it's likely
that more people would take the step

● We get higher productivity, better tools, better vendor independence and
so on.

www.hyphen-innovation.com

If you have questions or comments to this presentation, please send
an email to martin.astradsson@hyphen-innovation.com

